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Abstract

We review linear statistical models for the analysis of computational exper-
iments on optimization algorithms. The models offer the mathematical frame-
work to separate the effects of algorithmic components and instance features
included in the analysis. We regard test instances as drawn from a popula-
tion and we focus our interest not on those single instances but on the whole
population. Hence, instances are treated as a random factor. Overall these ex-
perimental designs leads to mixed effects linear models. We present both the
theory to justify these models and a computational example in which we an-
alyze and comment several possible experimental designs. The example is a
component-wise analysis of local search algorithms for the 2-edge-connectivity
augmentation problem. We use standard statistical software to perform the
analysis and report the R commands. Data sets and the analysis in SAS are
available in an online compendium.

1 Introduction

Linear statistical models are well developed mathematical tools for the separation of
effects in the observed results of an experiment. Among them, there is the classi-
cal analysis of variance (ANOVA). Such models have proved useful in many scientific
disciplines and also in the field of optimization. In operation research, application
examples to test mathematical programming software go back to the late 1970s, see,
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e.g., Zanakis (1977); Lin and Rardin (1979); Coffin and Saltzman (2000); while in
computer science and in testing heuristic and evolutionary computation methods their
use can be traced back to the late 1990s. Prominent articles in this case are Barr et al
(1995); McGeoch (1996); Rardin and Uzsoy (2001); Czarn et al (2004). However, only
a very small number of articles, relatively to those published in these fields, report
about using these statistical methods. This fact might be explained by two factors:
the need of a background in statistics and experimental design techniques in order to
correctly apply and fully understand the results provided; and the presence of under-
lying assumptions that make the researcher in computer science or operations research
sceptical about the real applicability of these methods in the field of optimization. The
aim of this chapter is to introduce the reader to the use of linear statistical models in
the cases where they can be applied. We aim at showing the basic theory behind the
methods, the practical application by means of publically available software and the
possible outcomes. We go perhaps at a deeper level of detail with respect to previ-
ous publications in this field, hoping to facilitate future applications. Yet, we do not
aim at removing completely the two barriers above: understanding of statistics and a
careful investigation of applicability to each specific case are necessary preconditions.
Knoweldge of the material in the appendix of this book might be required to follow
this chapter.

We emphasize that our intention is presenting these tools as complementary and
not substitutive to the current practice of reporting numerical results on benchmark
instances with appropriate tables. This practice is indeed helpful to guarantee compa-
rability and verifiability of results. The methods in this chapter are however desirable
for scientific experimental analysis, where the interest is in explaining the causes of
success of a certain optimization approach rather than in mere comparative studies
(see Hooker, 1996 for a discussion on these guidelines).

To illustrate the application of the statistical tools we use a case example in which
we study heuristic algorithms for a graph problem: finding the cheapest augmentation
of arcs that make a network 2-edge-connected (Bang-Jensen et al, 2009). The heuris-
tics are local search algorithms (Michiels et al, 2007) obtained by the combination of
some specific components, which may be qualitative, like for the presence or not of
an algorithmic step or numerical, like for parameters that assume real values. Our
interest is in understanding the contribution of these components.

In statistical terms, these components are called factors . The interest is in the
effects of the specific levels chosen for these factors. Hence, we say that the levels and
consequently the factors are fixed. Moreover, when for two factors, every factor level
of a factor appears with every factor level of another factor we say that the two factors
are crossed. We restrict ourselves to analyze the effect of these factors on a univariate
measure of performance, namely the quality of the solutions returned by the algorithm
at termination. Multivariate analysis are however also possible by extensions of these
methods, we refer to Johnson and Wichern (2007) for an overview of these.

Typically, the researcher takes a few instances for the problem at hand and collects
the results of some runs of the algorithms on these instances. The instances are
treated as blocks and all algorithms are run on each single instance. Results are
therefore grouped per instance. The instances are chosen at random from a large set of
possible instances of the problem and the interest of the researcher is not just on the
performance of the algorithms on those specific instances chosen, but rather on the
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generalization of the results to the entire population of instances. In statistical terms,
instances are also levels of a factor. However, this factor is of a different nature than
the fixed algorithmic factors described above. Indeed, the levels are chosen at random
and the interest is not in these specific levels but in the population from which they
are sampled. We say that the levels and the factor are random.

Further, it might be possible to stratify the instances according to some character-
istics or features easily retrievable. The researcher might then be interested in studying
the influence of these characteristics on the performance of the algorithms. Instance
characteristics can be regarded as fixed factors, because we can control them and the
interest is on the specific levels. However, in such a study another issue arises: the
instances at different levels of the instance factors are different, that is, they are sam-
pled from different populations. In other terms, the random factor does not cross like
all other factors, but it is instead nested within some of them.

In statistics, the effects described are modeled as linear combinations and math-
ematical theory has been developed to make inference about the populations on the
basis of the results observed in the samples. The mixed nature of the factors leads
to so-called nested linear mixed models , see for instance Molenberghs and Verbeke
(1997); Montgomery (2005); Pinheiro and Bates (2000). These designs, which are typ-
ical of the context of optimization, are non-trivial designs and go beyond the classical
multi-factorial ANOVA, where all factors are instead treated as fixed. As we will see,
the mathematical formula involved and the inference derived are different in the case
of mixed-effects models and this may lead to a different inference. In our practical
application we will give an example where this difference clearly arise. To the best
of our knoweldge, only Lin and Rardin (1979) make a clear reference to the nesting
issue while in all other articles that we reviewed the mixed nature of the factors is not
emphasized or ignored.

The whole chapter is based on the assumption that additive linear models and
normal distributions are appropriate to describe the experimental data. This is clearly
a strong assumption that is often not met in experiments involving optimization al-
gorithms. In fact, the example that we develop in the second part of the chapter was
selected out of three, where the other two did not pass a diagnostic analysis on the as-
sumptions. The arguments in defense of these tools also when assumptions are not met
are the proven robustness of F -ratio tests in the analysis of variance method (Mont-
gomery, 2005) and that small adjustments of the data, like increase in the number of
observations, removal of outliers and opportune data transformations (e.g., log trans-
formation) may contribute to meet the assumptions. Our point of view is that even
when assumptions are not met, these tools can be a very useful exploratory device
to look into the data. Extensions and generalizations that remove the need for these
assumptions exist but for reasons of space we will not review them here.

The approach that we take to statistical inference is the classical one from statistics
in which experiments are fully designed a priori. Even though differences among the
entities studied always exist, we assume as correct the conservative hypothesis of no
differences, and distinguish between statistical differences and practically meaningful
differences. In this sense, we define a minimal effect size that is relevant in practice and
derive the amount of data necessary to achieve a statistical power of 0.80 at a given
level of significance of 0.05. We acknowledge that there are other ways to address the
issue of sample size determination in experimental design.
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The chapter is organized as follows. In Section 2, we formalize the problem of
inference and the experimental designs, and we provide analytical support for the
use of mixed models. We then review the theoretical background of the analysis. A
reader primarily interested in the practical application of these methods may skip
this part or consider it only when referenced back in Section 4. In Section 3, we
introduce the application example on the 2-edge-connectivity problem. In Section
4, we develop the example producing an extended numerical analysis that reflects
the mathematical background and the organization of Section 2. With the aim of
facilitating reproduction, we report explicitly, in this section, the commands for the
analysis in R, the free software environment for statistical computing (R Development
Core Team, 2008). We conclude in Section 5 with a summary and pointers to further
developments that could be helpful in similar studies.

2 Experimental design and statistical analysis

In the most basic design, the researcher wishes to assess the performance of an opti-
mization algorithm on a single problem instance π. Since optimization algorithms are,
in many cases, randomized, their performance Y on one instance is a random variable
that might be described by a probability/density function p(y|π).

Most commonly, we aim at drawing conclusions about a certain class or population
of instances Π. In this case, the performance Y of the algorithm on the class Π is
described by the probability function

p(y) =
∑
π∈Π

p(y|π)p(π), (1)

with p(π) being the probability of sampling instance π. In other terms, we are in-
terested in the distribution of Y marginalized over the population of instances. This
modeling approach is described also by McGeoch (1996), Wolpert and Macready (1997)
and Birattari (2004).

In experiments, we sample the population of instances and on each sampled instance
we collect sample data on the performance of the algorithm. If on an instance π we
run the algorithm r times then we have r replicates of the performance measure Y ,
denoted Y1, . . . , Yr, which are, conditionally on the sampled instance and given the
random nature of the algorithm, independent and identically distributed (i.i.d.), i.e.,

p(y1, . . . , yr|π) =
r∏
j=1

p(yj|π). (2)

Marginally (over all the instances) the observed performance measures may show de-
pendence, as is seen from

p(y1, . . . , yr) =
∑
π∈Π

p(y1, . . . , yr|π)p(π). (3)

The model (3) can be easily extended to the case where several algorithms are
applied to the same instance by incorporating fixed effects in the conditional structure
of (2). Next, we illustrate how this leads naturally to a mixed model.
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We organize our presentation in different cases according to the number and type
of factors involved. For the sake of conciseness, we identify the cases with the following
notation: 〈 algorithm

factors
,

number of
instances

( instance
factors

)
,

number of
runs

〉
For example, 〈N, q(M), r〉 means that we are in the presence of an experimental design
with N algorithmic factors, q instances sampled from each combination of M instance
factors and r runs of the algorithm per instance. We use small letter when referring to
number of factors and capital letter when referring to number of levels. We indicate
the absence of fixed factors by a dash -. The round parenthesis indicates nesting and
its meaning is better explained in Section 2.3.

2.1 Case 〈-, q(-), r〉: Random effect design

We start with the simplest experiment where one algorithm is evaluated on q instances
randomly sampled from a class Π. The experiment is performed as follows. In a first
stage an instance is randomly drawn from a population of instances, whereafter the
single algorithm is run r times on the instance. Given the stochastic nature of the
algorithm, this produces, conditionally on the sampled instance, r replications of the
performance measure that are i.i.d. We use Yij to denote the random performance
measure obtained in the jth replication of the algorithm on the ith instance.

The instances included in the study are randomly drawn from some population of
instances, and the interest is in inferring about this larger population of instances, not
just on those included in the experiment. The above considerations lead us to propose
the following random effects model

Yij = µ+ τi + εij, (4)

where

µ is an overall mean,

τi is a random variable representing the effect of instance i,

εij is a random error term for replication j on instance i.

As such, the stochastic behavior of the response variable originates from both the
instance and the algorithm. Concerning the random elements in the right-hand-side
of (4) we assume the following:

– τ1, . . . , τq are i.i.d. N(0, σ2
τ ),

– εij, i = 1, . . . , q, j = 1, . . . , r, are i.i.d. N(0, σ2),

– all τi and εij are independent of each other.

Note that the postulated random effects model satisfies the structure of the conditional
and marginal models given by (2) and (3). In particular, the conditional distribution
of the performance measure given the instance is given by

Yij|τi ∼ N(µ+ τi, σ
2), j = 1, . . . , r.

5



www.manaraa.com

Furthermore, conditionally on the random effect τi, the random variables Yi1, . . . , Yir
are independent. Integrating out the random effects we obtain the unconditional model

Yij ∼ N(µ, σ2 + σ2
τ ), i = 1, . . . , q, j = 1, . . . , r.

The use of random instance effects yields dependency between the performance mea-
surements obtained on a specific instance, while performances are independent if they
pertain to different instances. Hence, the covariance structure of model (4) is

Cov(Yij, Yi′j′) =


σ2 + σ2

τ , if i = i′ and j = j′,
σ2
τ , if i = i′ and j 6= j′,

0, if i 6= i′,
(5)

which is the compound symmetric covariance structure. The parameters σ2 and σ2
τ

determine the variance of the individual Yij as well as the covariance between the Yij,
and therefore are called the variance components.

Collecting the performance measurements Yi1, . . . , Yir into the vector Yi, and de-
noting by 1 the r-dimensional vector of ones and by Σ the (r × r) covariance matrix
of Yi, i.e.

Σ =


σ2 + σ2

τ σ2
τ · · · σ2

τ

σ2
τ σ2 + σ2

τ · · · σ2
τ

...
...

. . .
...

σ2
τ σ2

τ · · · σ2 + σ2
τ

 ,
we can summarize the above as

Yi ∼ Nr(µ1,Σ), i = 1, . . . , q,

independently.
Note that in ordinary ANOVA, the instance factor in model (4) would be considered

a fixed factor, i.e., non-random, yielding

Yij ∼ N(µ+ τi, σ
2), i = 1, . . . , q, j = 1, . . . , r,

with Yij being independent, i.e., unlike model (4), this model does not take into account
dependencies arising from applying an algorithm repeatedly to the same instances.

Given that the instances are here considered as samples from some larger population
of instances, we are not interested in performing a hypothesis test about the particular
levels included in the study. Instead, the interest is in the whole population of instances
and hence the hypothesis of interest is one involving the variance component σ2

τ , in
particular

H0 : σ2
τ = 0 versus H1 : σ2

τ > 0. (6)

Clearly, if H0 is true then the instance distribution reduces to a point mass at zero,
implying that all possible instance parameters are fixed and equal to zero, which
corresponds to no instance effect.

Intuitively, tests concerning σ2
τ , as specified in (6), and tests involving a comparison

of the algorithmic variance σ2 and the instance variance σ2
τ should be based on a
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comparison of the between instance variability, measured by r
∑q

i=1(Ȳi.− Ȳ..)2, and the
within instance variability, measured by

∑q
i=1

∑r
j=1(Yij − Ȳi.)2 (the dot and the bar

in Ȳi. indicate averages over the index j and in Ȳ.. average over both indices i and j).
Statistical theory motivates the use of the ratio

F =

r
Pq
i=1(Ȳi.−Ȳ..)2

(q−1)(σ2+rσ2
τ )Pq

i=1

Pr
j=1(Yij−Ȳi.)2

q(r−1)σ2

, (7)

as it can be shown that under the above model assumptions F ∼ F (q − 1, q(r − 1)),
where F (ν1, ν2) is used to denote the F distribution with ν1 and ν2 degrees of freedom.
We distinguish three specific uses of (7):

– Test for an instance effect: H0 : σ2
τ = 0 versus H1 : σ2

τ > 0.

Under H0 : σ2
τ = 0 we have

F1 =
MSI

MSE
,

where

MSI =
r
∑q

i=1(Ȳi. − Ȳ..)2

q − 1
,

MSE =

∑q
i=1

∑r
j=1(Yij − Ȳi.)2

q(r − 1)
,

and F1 ∼ F (q − 1, q(r − 1)), leading to the decision rule to reject H0 at the
significance level α if f1 > F (1−α; q− 1, q(r− 1)), where f1 is the realization of
F1 from the observed data. An intuitive motivation for the form of statistic F1

can be obtained from the expected mean squares. It can be shown that

E[MSI] = σ2 + rσ2
τ , and (8)

E[MSE] = σ2, (9)

so under H0 both MSI and MSE estimate σ2 in an unbiased way, and F1 can be
expected to be close to one. On the other hand, large values of F1 give evidence
against H0.

– Test involving a comparison of the instance and the algorithmic variance: H0 :
σ2
τ/σ

2 = c versus H1 : σ2
τ/σ

2 6= c.

Under H0 : σ2
τ/σ

2 = c we have

F2 =

r
Pq
i=1(Ȳi.−Ȳ..)2

(q−1)(1+rc)Pq
i=1

Pr
j=1(Yij−Ȳi.)2

q(r−1)

∼ F (q − 1, q(r − 1)),

leading to the decision rule to reject H0 if f2 < F (α/2; q − 1, q(r − 1)) or f2 >
F (1− α/2; q − 1, q(r − 1)).
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– Power calculations. Power calculations can be useful at the design stage of the
experiment when one has to decide on the number of instances q and the number
of replicates r. The power of a statistical test is the probability that the test will
reject the null hypothesis when in fact the alternative hypothesis is true. The
power of the F test for testing H0 : σ2

τ = 0 vs H1 : σ2
τ > 0 can be computed from

POWER = Pr

{
F >

F (1− α; q − 1, q(r − 1))

1 + rσ̃2
τ/σ

2

}
, (10)

where σ̃2
τ is a value for σ2

τ from H1. We refer to Section 4.1 for an illustration on
the use of power calculations.

It might be also relevant to estimate the overall mean µ. Since we have E[Yij] = µ
then an unbiased estimator of µ is:

µ̂ = Ȳ··

It can be shown that an unbiased estimator1 of σ2[Ȳ..] is s2[Ȳ..] = MSI/qr and

Ȳ·· − µ
ŝ[Ȳ··]

∼ t(q − 1)

Hence, we obtain the confidence limits for µ by

ȳ·· ± t(1− α/2; q − 1)s[Ȳ··]. (11)

Confidence intervals on the variance components σ2
τ and σ2 can also be derived (see

Kutner et al, 2005).

2.2 Case 〈N, q(-), r〉: Mixed effect design

We now consider the case where h algorithms are evaluated on q instances randomly
sampled from a class Π. The experiment is performed as follows. In a first stage an
instance is sampled from a population of instances. Next, each algorithm is run r
times on the instance. Again, conditionally on the instance and for a given algorithm,
we obtain r i.i.d. replications of the performance measure. We use Yijk to denote
the random performance measure obtained in replication k of algorithm j on instance
i. Note that we are here, for simplicity of exposition, dealing with a special case of
design 〈N, q(-), r〉, namely the case where N = 1, which corresponds to having one
single factor representing the different algorithms.

The algorithms included in the study are the ones in which we are particularly
interested, and hence they can be considered as levels of a fixed factor. As before, the
instances are drawn randomly from some population of instances and the interest is
in inferring about this global population of instances, not just those included in the
study. Hence, we assume that the performance measure can be decomposed according
to the following mixed effects ANOVA model

Yijk = µ+ αj + τi + γij + εijk, (12)

where
1We adopt the convention of using the same symbol for esimators and estimates.
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µ is an overall performance level common to all observations,

αj is a fixed effect due to the algorithm j,

τi is a random effect associated with instance i,

γij is a random interaction between instance i and algorithm j,

εijk is a random error for replication k of algorithm j on instance i.

For identification purposes we impose the usual sum constraint on the factor level
effects, i.e.,

∑h
j=1 αj = 0. The assumptions imposed on the random elements are

– τi are i.i.d. N(0, σ2
τ ),

– γij are i.i.d. N(0, σ2
γ),

– εijk are i.i.d. N(0, σ2),

– the τi, γij and εijk are mutually independent random variables.

Also here the postulated model satisfies the structure of the conditional and marginal
models given by (2) and (3). In particular, the conditional distribution of the per-
formance measure given the instance and the instance-algorithm interaction is given
by

Yijk|τi, γij ∼ N(µ+ αj + τi + γij, σ
2), i = 1, . . . , q, j = 1, . . . , h, k = 1, . . . , r.

Furthermore, conditionally on the random effects τi and γij, i = 1, . . . , q, j = 1, . . . , h,
all responses are independent. Integrating out the random effects we obtain the
marginal model for the response variables:

Yijk ∼ N(µ+ αj, σ
2 + σ2

τ + σ2
γ), i = 1, . . . , q, j = 1, . . . , h, k = 1, . . . , r.

The use of random instance effects and random instance-algorithm interactions yields
dependency between the performance measurements obtained on a specific instance,
while observations are independent if they pertain to different instances. The covari-
ance between any two observations under model (12) is

Cov(Yijk, Yi′j′k′) =


σ2 + σ2

τ + σ2
γ, if i = i′, j = j′, k = k′,

σ2
τ + σ2

γ, if i = i′, j = j′, k 6= k′,
σ2
τ , if i = i′, j 6= j′,

0, if i 6= i′.

(13)

The mixed model (12) with its assumptions forms the natural basis for testing
hypotheses about both fixed and random factors, and their interactions. Concerning
the fixed factors, the interest is usually in testing whether there is a difference between
the factor level means µ+ α1, . . . , µ+ αh. Formally, one tests the hypothesis

H0 : α1 = α2 = . . . = αh = 0,

H1 : at least one αj not equal to 0.

9
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Mean Expected Test
Effects Squares df Mean Squares Statistics

Fixed Factor MSF h− 1 σ2 + rσ2
γ + rp

Ph
j=1 α

2
j

h−1
MSF/MSFR

Random Factor MSR p− 1 σ2 + rσ2
γ + rhσ2

τ MSR/MSFR

Interaction MSFR (h−1)(p−1) σ2 + rσ2
γ MSFR/MSE

Error MSE hq(r − 1) σ2

Table 1: Expected mean squares and consequent appropriate test statistics for a mixed
two-factor model. For a generalization to multifactorial cases see rules in Mont-
gomery (2005); Kutner et al (2005)

Similarly to the random effects model, for the random effects, tests about the particular
levels included in the study are meaningless. Instead we test hypotheses about the
variance components σ2

τ and σ2
γ, reflecting that the ultimate interest is in the whole

population of instances:

H0 : σ2
τ = 0, and H0 : σ2

γ = 0,
H1 : σ2

τ > 0, H1 : σ2
γ > 0,

respectively. In balanced designs, the test statistics for these hypotheses are ratios of
mean squares that are chosen such that the expected mean squares of the numera-
tor differs from the expected mean squares of the denominator only by the variance
components of the random factor in which we are interested. We report the resulting
analysis of variance in Table 1. Formal procedures that automatize the derivation of
these tables are described by Montgomery (2005, pag. 502), Kutner et al (2005) and
Molenberghs and Verbeke (1997, 2005).

Estimators for the fixed effects of balanced mixed models have been also derived.
Estimators of the fixed effects αj are α̂j = Ȳ·j· − Ȳ···. Perhaps more interesting for our
purposes in the analysis of optimization algorithms is the marginal mean µ·j = µ+αj
whose best estimator is µ̂·j = Ȳ··· + (Ȳ·j· − Ȳ···) = Ȳ·j·. Unbiased estimators for the
variances σ2[α̂j] and σ2[µ̂·j] are

s2[α̂j] =
1

qr
MSFR and s2[µ̂.j] =

h− 1

hqr
MSFR +

1

hqr
MSR,

respectively. We can then compute exact confidence limits on pairwise comparisons of
fixed effects, D = µ·j − µ·j′ = αj − αj′ , by the fact that

D̂ −D
s[D̂]

∼ t
(
(h− 1)(p− 1)

)
,

where s2[D̂] = 2s2[α̂j].
Tukey’s multiple comparison procedure can be used to guarantee a family confi-

dence coefficient 1−α when multiple comparisons are to be performed. In other terms,
if we perform

(
h
2

)
pairwise comparisons for the fixed factor, we want each of them to

be correct (1 − α)100 percent of times. Tukey’s procedure consists in substituting

10



www.manaraa.com

the t distribution with the studentized range distribution. More precisely, we can
make explicit the multiple comparisons confidence limits for all pairwise comparisons
D = µ.j − µ.j′ , or equivalently D = αj − αj′ , with family confidence coefficient of at
least 1− α as follows

D̂ ± Ts[D̂], T =
1√
2
t′(1− α;h, (h− 1)(q − 1))

where t′(p; ν1, ν2) denotes quantile p of the studentized range distribution with ν1 and
ν2 degrees of freedom.

A paired comparison plot (see Figure 5 in Section 4.2) can be used to visualize
Tukey’s multiple comparisons when the design is perfectly balanced. It consists of
plotting around each estimated mean, e.g., µ̂.j, an interval whose limits are ȳ.j ±
Ts[D̂]/2. When intervals overlap in this plot we conclude that there is not significant
difference between the means compared. The advantage of this plot is that it shows
at the same time the significance and the entity of the differences.

2.3 Case 〈-, q(M), r〉: Nested effects design

In the previously considered designs the instances were assumed to be sampled from
some (homogeneous) population of instances, whereafter they were solved by all algo-
rithms. Each instance was combined with all possible levels of the algorithmic factors
and hence the instance factor and the algorithmic factors were crossed. It is clear that,
besides the algorithmic factors, also the characteristics of the instances may affect the
performance measure, and that to study these formally we have to include them as
fixed factors in the experimental design. Assume that the instances can be character-
ized by M factors, each of them having a given number of levels. The combination of
the levels of these factors defines an instance class and the instances are then randomly
sampled from it. As such, instances are specific for the given combination of levels of
the instance factors, meaning that they are not crossed with the instance factors, but
nested within them.

We consider the simplest design where there is only one instance factor with m
possible levels, defining m instance classes. From each instance class (factor level),
q instances are randomly sampled and subsequently solved r times by a single algo-
rithm. We denote here by Yijk the random performance measure obtained in the kth
replication of the algorithm on the ith instance sampled from the jth class. Hereafter,
we use the subscript i(j) to indicate that the ith factor level of the random factor is
nested within the jth factor level of the fixed factor. A possible model for this design
is

Yijk = µ+ βj + τi(j) + εijk (14)

where

µ is an overall performance level common to all observations,

βj is a fixed effect due to the instance class j,

τi(j) is a random effect associated with instance i sampled from class j,

11
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Class 1 Class 2

Instance Instance
1 2 3 1 2 3

Y111 Y211 Y311 Y121 Y221 Y321
...

...
...

...
...

...
Y11r Y21r Y31r Y12r Y22r Y32r

Figure 1: An illustration of nested factor design with m = 2 and q = 3. The instances
within the two classes are different and should be more appropriately identified
by 1, 2, 3 and 4, 5, 6.

Square Expected Test
Effects Mean df Square Mean Statistics

Fixed Factor MSF m− 1 σ2 + rσ2
τ + rp

Pm
j=1 β

2
j

m−1
MSF/MSI(F )

Nested Factor MSI(F ) m(p− 1) σ2 + rσ2
τ MSI(F )/MSE

Error MSE mq(r − 1) σ2

Table 2: Expected mean squares and consequent appropriate test statistics for a two-factor
nested model. For a generalization to multifactorial cases see rules in Montgomery
(2005); Kutner et al (2005)

εijk is a random error for replication k on instance i in class j.

The assumptions on the random effects are as follows:

– τi(j) are i.i.d. N(0, σ2
τ ),

– εijk are i.i.d. N(0, σ2),

– τi(j) and εijk are independent random variables.

The principle of nesting is illustrated in Fig. 1. Under the above model the response
variables are linear combinations of independent normal random variables and hence
they follow a normal distribution. To be specific

Yijk ∼ N(µ+ βj, σ
2 + σ2

τ ), i = 1, . . . , q, j = 1, . . . ,m, k = 1, . . . , r.

The above model forms the basis for performing inference about the factor effects
βj. On the other hand the instances are randomly drawn from some larger population
of instances and we focus on the variability by testing the variance component σ2

τ of
the instances similarly to what seen in the previous two cases. The quantities needed
for developing the tests, and the test statistics themselves are presented in Table 2.

2.4 Case 〈N, q(M), r〉: General mixed effects design

In this case, the researcher wishes to assess how the performance measure Y is affected
by several parameters of the algorithms and of the instances. Ideally, we fix those

12



www.manaraa.com

parameters that are most important and that we can control, and randomize those
properties that we do not understand or cannot control. The parameters controlled
may be both categorical or numerical. We consider the following setting:

• Factors A1, . . . , AN represent the parameters of the algorithms. Each combina-
tion of these factors gives rise to an instantiated algorithm.

• Factors B1, . . . , BM represent the parameters of the instances (or the stratifica-
tion factors of the whole space of instances). Each combination of these factors
gives rise to a different class of instances Πl.

• From each class of instances Πl, q instances are sampled randomly and on each
of them, each instantiated algorithm is run r times.

The factors Ai, i = 1, . . . , N , and Bj, j = 1, . . . ,M , are fixed factors and the factor
instance is a random factor. Since the instances within each class Πl are different the
design is nested. This yields a linear mixed model that can be written as

Yi1,...,iN ,j1,...,jM ,k = µ+ αi1 + . . .+ αiN + βj1 + . . .+ βjM+

+ τk(j1,...,jM ) + εi1,...,iN ,j1,...,jM ,k
(15)

with

{i1, . . . , iN} an index set referring to the levels of the algorithmic factors A1, . . . , AM ;

{j1, . . . , jM} an index set referring to the levels of the instance factors B1, . . . , BN ;

αi1 , . . . , αiN the main effects and interactions of the algorithmic factors A1, . . . , AM ;

βj1 , . . . , βjM the main effects and the interactions of the instance factors B1, . . . , BM ,

τk(j1,...,jM ) the random effect of instance k in setting {j1, . . . , jM} of the instance
factors,

εi1,...,iN ,j1,...,jM ,k a random error term.

and where, for brevity, we omitted the interaction terms between all fixed factors.
The analysis of this model is a generalization of those outlined in the previous

cases. However, it is more convenient to cast the current model into the framework of
the linear mixed model (LMM), where (15) can be rewritten as

Y = Xβ + Zb + ε (16)

with

Y a n-vector that contains the response variables,

X a known n × k matrix, the design matrix associated with the fixed regression
coefficients,

β is a k-vector that contains the fixed regression coefficients,
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Z a known n× q matrix, the design matrix associated with the random regression
coefficients,

b a q-vector that contains the random regression coefficients,

ε a n-vector of error terms.

The terms µ+αi1 + . . .+αiN + βj1 + . . .+ βjM for all combinations of indices are now
represented by Xβ and the model is more general because it allows to include both
qualitative and quantitative variables while in the models encountered above variables
were bounded to be qualitative. Model (16) contains two random components, namely
b and ε, for which we make the following distributional assumptions:

b ∼ Nq(0,D) and ε ∼ Nn(0,Σ)

with b and ε independent random vectors, and where N`(µ,Ψ ) denotes the `-variate
normal distribution with mean vector µ and covariance matrix Ψ . Clearly, the LMM
satisfies the conditional and marginal structures outlined in the introduction of Section
2; in particular, conditionally,

Y|b ∼ Nn(Xβ + Zb,Σ) (17)

and, marginally,

Y ∼ Nn(Xβ,V[α]), (18)

where V[α] = ZDZ′+Σ. We use the notation V[α] here in order to indicate explicitly
the dependence of the marginal covariance matrix on an unknown vector α of param-
eters in the covariance matrices D and Σ. Although several methods are available to
estimate the LMM, the classical approach is based on maximum likelihood estimation
of the marginal model (18). According to the latter, one maximizes the likelihood
function, given by

L(θ) =
1

(2π)n/2|V[α]|1/2
exp

[
−1

2
(Y −Xβ)′V−1[α](Y −Xβ)

]
,

with respect to the vector θ = (β,α) of unknown model parameters, leading to the

maximum likelihood estimator (MLE) θ̂ = (β̂, α̂). For a given fixed α, the MLE for β

can be obtained explicitly, and is given by

β̂ = (X′V−1[α]X)−1X′V−1[α]Y,

the well known generalized least squares estimator for the marginal model (18). How-
ever, in practice α is typically unknown and hence it must be replaced by an estimate.
For this one often uses the restricted maximum likelihood (REML) method, which al-
lows one to estimate α without having to estimate the parameters of β first. The basic
idea of the REML method is to form linear combinations K′Y, where K is a matrix of
full column rank, such that the joint distribution of these transformed data no longer
depends on β. This is achieved by constructing K having columns orthogonal to the
columns of X, i.e., K′X = 0. Another motivation for the REML method stems from
the fact that it produces estimates that are less biased than the MLEs.
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An appealing feature of the likelihood framework is that it provides a general
procedure for testing hypotheses about model parameters, by simply comparing two
likelihood values: the likelihood of a restricted model, the null model, and that of an
unrestricted model, also referred to as the full model. This approach to hypothesis
testing is especially useful in complex and unbalanced designs, where exact tests as
the F tests described above are typically unavailable. Formally, consider the above
introduced parameter vector θ and its associated parameter spaceΘ (the set of possible
values for θ), so θ ∈ Θ, and let θ1 denote the subvector of θ that is of interest for
testing. In other terms, let the vector θ1 contain the parameters of the unrestricted
model that are not contained in the restricted model. Under the null hypothesis
H0 : θ1 = θ10, the parameter vector θ is restricted to lie in some subset Θ0 of Θ. To
test the hypothesis about θ1 one computes the likelihood ratio test statistic, expressed
by the ratio between the maximum likelihood of the sample data under the restricted
model and the one under the unrestricted model, i.e.,

Λ =
maxθ∈Θ0

L(θ)

maxθ∈Θ
L(θ)

,

and rejectsH0 if Λ is too small. It can be shown that under certain regularity conditions
and assuming H0 : θ1 = θ10 holds, −2 ln Λ is approximately distributed as χ2

ν , provided
the sample size is large. The degrees of freedom ν of the approximating chi-squared
distribution are given by the difference of the dimensions of the parameter spaces Θ0

and Θ. One of the assumptions for having a chi-squared limiting distribution for
−2 ln Λ is that the parameters in the null hypothesis are not on the boundary of the
parameter space. In the LMM we are often interested in testing a hypothesis about a
random effect that takes the form H0 : σ2 = 0, which constitutes a violation of this
assumption. If one uses in such a case the chi-squared approximation with its usual
degrees of freedom, then the test will be conservative. For a detailed description of the
asymptotic properties of the maximum likelihood method and the likelihood ratio test
statistic we refer the reader to Lehmann (2003) and Lehmann and Romano (2008).

3 Augmenting a tree to a 2-edge-connected graph

In this section we briefly describe the application example that we will develop in the
next section. The example is extracted from a study on heuristic and exact algorithms
for the so-called E1-2AUG problem (Bang-Jensen et al, 2009). Here, we focus on an
intermediate result of that work concerning local search algorithms. We first describe
the problem and, then, sketch the local search schemes from which the algorithms are
derived; finally we introduce the test instances.

3.1 Definitions and problem formulation

In graph theory terminology (see, for example, Bondy and Murty 2008), an edge uv in
a connected graph G = (V,E) is a bridge if we can partition V into two sets S, V − S
so that uv is the only edge from E with endpoints in both S and V − S. A graph is
2-edge-connected if it is connected and has no bridges.

The 2-edge-connectivity augmentation (E1-2AUG) problem asks for a given undi-
rected 2-edge-connected graph G = (V,E), a fixed spanning connected subgraph of G,
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S = (V, F ), and a non-negative weight function ω on E ′ = E − F , to find a subset X
of E ′ of minimal total weight so that A(G) = (V, F ∪X) is 2-edge-connected.

We restrict ourselves to only the cases where the graph G is a simple graph and S
is a tree. An edge uv ∈ E which is not in S is said to cover those edges of S which
correspond to the unique uv-path Puv in S. We assume that every edge uv in F is
covered by at least two edges in E ′. We call a subset X of E ′ a proper augmentation
of S if A(G) = (V, F ∪X) is 2-edge-connected.

Every optimal augmentation X is minimal, that is, no edge can be deleted from
X without leaving at least one edge of S uncovered. If a given augmentation is not
minimal it can be made so by means of a trimming procedure that removes edges from
X without leaving any edge of S uncovered.

It can be shown that the E1-2AUG problem is a special case of the general set
covering problem (Conforti et al, 2004). That is, the minimal weight augmentation
corresponds to the minimal weight selection of edges such that every edge of F is
covered by at least an edge from E ′.

3.2 Local search algorithms

Three construction heuristics named lightest addition (la), shortest path (sp) and
greedy covering (gc) have been designed in Bang-Jensen et al (2009). To improve the
solution provided by these heuristics, three local search schemes are used. They are
based on a first improvement strategy and on three different neighborhood structures.

Addition neighborhood (addn) Neighboring augmentations are obtained by adding
k edges from E ′ −X and trimming the resulting augmentation.

Destruct-reconstruct neighborhood (gcn) Neighboring augmentations are ob-
tained by removing k edges from the current augmentation and reconstructing the
resulting improper augmentation by means of the greedy set covering heuristic by
Chvatal (Cormen et al, 2001, pag. 1035).

Shortest path neighborhood (spn) It consists of deleting k edges and finding
the shortest path between pairs of their ending vertices in a suitable digraph. The
digraph is constructed considering edges available for the augmentation and not allow-
ing to reinsert deleted edges. After the insertion of the new edges the augmentation
is trimmed to make it again minimal.

Our task is to assess empirically the impact of three factors: the construction
heuristic, the local search scheme identified by its neighborhood and the parameter k
common to all neighborhoods.

3.3 Problem instances

In the experiments, we sample the space of instances of the E1-2AUG problem by
restricting ourselves to only a portion of it and by stratifying this portion according to
three instance characteristics: type of graphs, edge density and distribution of weights.2

2Note that the process of sampling should be designed carefully in order to avoid pitfalls like bias
towards some instances rather than others. For example, the possible non-isomorphic graphs of size
800 are more than those of size 200, hence they should be given more probability to appear. This
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The type distinguishes between uniform graphs (Type U), geometric graphs (Type G)
and small world graphs (Type sm) (see Bang-Jensen et al, 2009 for definitions). In all
types of graphs, the spanning tree S is chosen randomly. All graphs may have random
weights on their edges (r) or have uniform weights (1). The edge density is a measure
of the amount of edges present in the graph and we consider three possibilities, high,
medium and low, {h,m,l}.

4 Experimental analysis

We measure the performance of a run of an algorithm on an instance π by the gap
or percent error of the lower bound approximation, i.e., (z(π) − z∗(π))/z∗(π) · 100,
where z(π) is the observed solution cost in that run of the algorithm and z∗(π) is
the lower bound on the solution costs for that instance. This measure is feasible
in our example problem because a good lower bound can be determined for several
instances in relatively short time by integer programming. In fact, for most of the
cases the lower bound used is also proved to be the optimal solution. Other measures
of solution quality are possible. Zemel (1981) points out that a criterion for judging
quality measures is the invariance to simple transformation of the instances. Another
measure of interest, not based on solution quality, might be the computation time, since
the algorithms in the study have all a natural termination condition (the attainment
of a local optimum).3

We now develop the analysis on the local search algorithms for the E1-2AUG
problem proceeding case by case in the same order as in Section 2. The analysis is
conducted with the statistical package R (R Development Core Team, 2008) and in the
text we give the main commands to execute this analysis. In the online compendium
http://www.imada.sdu.dk/~marco/Mixed/ we report the data, the full code in R
and the same analysis in the statistical software package SAS.

4.1 Case 〈-, q(-), r〉: Random effects design

The goal of this simple case is to illustrate the decomposition of the variance of the
response observations in two components, namely, the variability of the results due to
the stochasticity of the algorithm and the variability due to the instances sampled from
the population. Moreover, we derive an estimation of solution quality with associated
confidence intervals.

We collect the results of one algorithm run a number of times on a set of instances.
Precisely, the algorithm is determined by the choices gc, addn and k3 and the instance
class by the choices G, m and 1.

In the design of the experiment, we decide the number of runs and the number of
instances on the basis of considerations on the level of significance and on the power.
In particular, we fix the level of significance to 0.05 and aim at a statistical power of
0.8. (These values are maintained throughout the remainder of the chapter.) We then

problem is solved if stratification is applied and the stratifying factor, in the example the size of the
graph, is included in the analysis.

3Often local search algorithms are enhanced by metaheuristics (Glover and Kochenberger, 2002)
and do not have anymore a natural termination condition. In this case, computation time can be
seen as an external parameter and treated as an algorithmic fixed factor in the models here discussed.
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Figure 2: Statistical power for the case 〈−, q(−), r〉. The power is a function of three
variables: σ̃2

τ/σ
2, q, r. The plot on the left shows a contour plot of the power

surface as a function of r and σ̃2
τ/σ

2 when q = 5. The plot on the right shows
the power as a function of q for a total number of experiments qr = 30, when
σ̃2
τ/σ

2 = 1.

use Formula (10) to compute the value of power as a function of r, q and σ̃2
τ/σ

2 and
we visualize this function in two alternative ways in Figure 2.

The two plots represent different views of POWER(σ̃2
τ/σ

2, q, r). In Figure 2 (a)
we show the contour plot of the POWER surface when considered as a function of
σ̃2
τ/σ

2 (called ratio) and r, for a fixed value of q (here q = 5). Each curve in this
plot corresponds to a specific power level, and represents the (r, σ̃2

τ/σ
2) combinations

for which this power is achieved. For instance, if one wants to detect with a 5%
significance test a σ̃2

τ which is of the same magnitude as σ2 (corresponding to ratio=1)
with a probability of 0.8 in an experiment with 5 instances, then one has to collect
6 replicates to achieve this level. Figure 2 (b) contains an alternative representation
of the POWER function. Here we show the power of the test when σ̃2

τ/σ
2 = 1 as a

function of the number of instances q, when the total number of experiments is fixed
at 30, i.e. when qr = 30. This bound on the number of experiments can be posed
by consideration on the computational time available. This plot has a peak around
q = 6 hinting at a POWER-optimal design under the conditions stated. We use
this observation to conclude that in order to have a power of 0.8 when σ̃2

τ/σ
2 = 1,

which we deem a relevant value for practical purposes, then we need to collect at least
r = 30/q = 5 runs on q = 6 instances.4

In a second step, we analyze the results of an experiment in which 6 instances were
randomly sampled from the class G-m-1, whereafter they were solved 5 times with the
algorithm gc-addn-k3. We load the data in R stored in a data frame and check its
content by means of the command str. The data frame is organized in two columns,

4In the next designs we omit the details of power computations. A computer program by Lenth
(2006) for these computations is available online.
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instance and algorithm, that indicate the factors of each observation, a column run

that reports the replicate number and a column gap that gives the response variable:

> load("Data/OPOR.dataR")

> str(OPOR, strict.width = "cut", width = 70)

Soutput
'data.frame': 30 obs. of 4 variables:
$ instance : Factor w/ 6 levels "G-800-0.5-1-pre.ins",..: 1 1 1 1 1..
$ run : int 5 1 3 2 4 5 3 4 2 1 ...
$ algorithm: Factor w/ 1 level "gc-addn-3": 1 1 1 1 1 1 1 1 1 1 ...
$ gap : num 4.07 4.05 4.07 4.07 4.07 ...

Before presenting the results of the analysis and performing hypothesis testing us-
ing the random effects model described in Section 2.1, we comment on the validity
of the model assumptions. Under model (4) the response variables are normally dis-
tributed with mean µ and variance σ2 + σ2

τ , and we validate this assumption using
a normal quantile plot (QQ plot). In such a plot we compare the empirical quan-
tiles (the ordered data) with the corresponding quantiles of a standard normal model.
In case the normality assumption holds then the points on the QQ plot will show a
straight line pattern (see also the appendix of this book). For the experiment under
consideration we show this plot in Figure 3 (a). Clearly, the points are quite tightly
concentrated along a straight line, indicating that a normal model is plausible for our
data. In Figure 3 (b) and (c), we report the quantile plots also for two other cases
that we examined. More precisely, the second QQ plot is obtained for a continuous
optimization problem, namely, the least median of squares, a robust way to estimate
parameters in linear regression analysis (Rousseeuw, 1984). The problem with this
plot is that the tails are very far from being normally distributed, with the tails of
the empirical distribution being lighter than normal tails. The third plot is based on
a study for the graph coloring problem (Chiarandini, 2005). In this case, the major
problem is that data, corresponding to the minimal number of colors used, are dis-
crete and distributed among only few values. The whole methodology developed in
the chapter works for continuous objective functions. When data are discrete but,
contrary to the case of the third plot, have many possible values, data can still be
reasonably approximated by a continuous distribution.

We now turn to fitting the random effects model (4) and to the estimates and
inference about its parameters. Random (and mixed) effects models can be fitted
with the function lmer of the package lme4 (Bates et al, 2008).5 Below we show the
resulting R output.

> library(lme4)

> fm1a <- lmer(gap ~ 1 + (1 | instance), data = OPOR)

> print(fm1a, digits = 3, corr = FALSE)

Soutput
Linear mixed model fit by REML
Formula: gap ~ 1 + (1 | instance)

Data: OPOR
AIC BIC logLik deviance REMLdev
-101 -96.6 53.4 -105 -107

5The package nlme (Pinheiro et al, 2008) can also treat mixed-effects models.
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Figure 3: The distribution of data. The left most plot shows the quantile distribution of
gc-addn-k3 when run 5 times on 10 instances of the class G-800-0.5. The plot
in the center shows 5 runs on 500 instances on a different problem where the
distribution shows strong deviance from normality even after data transforma-
tion. The right most plot shows the distribution of quantiles from 5 runs on 60
instances. Here the problem is discreteness of data.

Random effects:
Groups Name Variance Std.Dev.
instance (Intercept) 4.362580 2.0887
Residual 0.000173 0.0131
Number of obs: 30, groups: instance, 6
Fixed effects:

Estimate Std. Error t value
(Intercept) 4.559 0.853 5.35

Since there are no fixed effects, the model (4) passed to lmer contains only 1 that
represents the intercept µ. The random effect is expressed by (1 | instance) indi-
cating that the data is grouped by instance and that the random effect is constant
within each group, 1. By default lmer uses the restricted maximum likelihood (REML)
method to fit the model. The output provides information about some of the measures
of the fitting such as the log-likelihood (53.4), the deviance for the maximum likelihood
criterion (-105), the deviance for the REML criterion (-107), Akaike’s Information Cri-
terion (AIC=-101) and Schwartz’s Bayesian Information Criterion (BIC=-96.6). Under
the header Fixed effects, we find the estimate for the intercept µ while under Random
effects we find the estimates for the parameters related to the random effects and the
error distributions, here the standard deviations for τ (instance) and ε (Residuals),
respectively. For our experiment we obtain σ̂τ = 2.0887 and σ̂ = 0.0131, which indi-
cates that the variability in the response observations can be mainly attributed to the
variability of the instances.

By default the lmer function does not report the test on the hypothesis about the
variance components σ2

τ and σ2. This is because in general for unbalanced data the
computation of the test is not trivial. However, in the cases of perfectly balanced
experiments, like ours, we can proceed to compute the F statistic and the p-value on
the basis of (8) and (9), by plugging the estimates into the equations for the expected
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mean squares. We get

MSI = σ̂2 + rσ̂2
τ

= 0.01312 + 5(2.0887)2

MSE = σ̂2

= 0.01312,

and hence f1 = 126283, with p-value≈ 0 thus the null hypothesis is to be rejected. In
R:

> VC <- VarCorr(fm1a)

> sigma.tau <- as.numeric(attr(VC$instance, "stddev"))

> sigma <- as.numeric(attr(VC, "sc"))

> q <- nlevels(OPOR$instance)

> r <- length(unique(OPOR$run))

> MSI <- sigma^2 + r * sigma.tau^2

> MSE <- sigma^2

> 1 - pf(MSI/MSE, q - 1, q * (r - 1))

Soutput
[1] 0

We can compute the test on the random effects also by using the likelihood ratio
test. In this case, for the likelihood of the model without fixed effects we have to use
the function lm

> fm1a <- lmer(gap ~ 1 + (1 | instance), data = OPOR, REML = FALSE)

> fm1a.0 <- lm(gap ~ 1, data = OPOR)

> LRT <- as.numeric(2 * (logLik(fm1a) - logLik(fm1a.0)))

> 1 - pchisq(LRT, 1)

Soutput
[1] 0

The test confirms the rejection of the null hypothesis. Note that we perform here a
test where the parameter of the null hypothesis is on the boundary of the parameter
space, and hence, as noted before, the classical chi-squared approximation to the null
distribution of the likelihood ratio test is inappropriate. For this particular case where
we test the importance of a single variance component, the limiting distribution of
the likelihood ratio statistic is a mixture of a point mass at zero and a chi-squared
distribution with one degree of freedom, where both components of the mixture have
probability one. This implies that the usual p-value needs to be divided by two, or,
otherwise stated, that the classical test is conservative (Stram and Lee, 1994, 1995).

Finally, if we wish to predict the performance of the algorithm on a new instance,
the best we can do is to give µ̂ = 4.559 and to give the 95% confidence interval.
According to (11) of Section 2.1:

> s <- sqrt(MSI/(q * r))

> Y.. <- mean(OPOR$gap)

> qsr <- qt(1 - 0.025, 5)

> Y.. - qsr * s
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Soutput
[1] 2.37

> Y.. + qsr * s

Soutput
[1] 6.75

hence µ in [2.37; 6.75].

4.2 Case 〈N, q(-), r〉: Mixed effects design

We discuss two designs within this case: 〈1, q(−), r〉 and 〈N, q(−), r〉. The focus is, in
the first design, on the visualization of the results and, in the second design, on the
comparison of replicated vs unreplicated designs.

〈1, q(−), r〉 In the first design we aim at comparing the performance of the addition
neighborhood at different values of k, over an instance class. More precisely, we have
the following factors:

– algorithm: three algorithms, starting from the solution produced by greedy
covering (gc) and using the k-addition neighborhood (addn) with k = {1, 3, 5},
hence levels in {gc-addn-1,gc-addn-3,gc-addn-5};

– instance: 5 instances randomly sampled from the class G-m-1;

– replicates: 5.

> load("Data/YPOR.dataR")

> str(YPOR, strict.width = "cut", width = 70)

Soutput
'data.frame': 75 obs. of 5 variables:
$ instance : Factor w/ 5 levels "G-800-0.5-1-pre.ins",..: 1 1 1 1 1..
$ k : Factor w/ 3 levels "1","3","5": 3 2 1 2 1 3 3 1 2 2 ...
$ algorithm: Factor w/ 3 levels "gc-addn-1","gc-addn-3",..: 3 2 1 2..
$ run : int 5 2 4 1 1 1 5 5 4 3 ...
$ gap : num 3.67 4.07 4.07 4.05 4.05 ...

Relevant questions for this design are

• Is there an instance effect, i.e., do the instances contribute significantly to the
variability of the responses?

• Do the mean performances of the algorithms with different k differ? If yes, how
different are they?

• Do the instance-algorithm interactions contribute significantly to the variability
of the responses?
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Figure 4: The data in the design 〈1, q(−), r〉. The three algorithms, gc-addn-1, gc-
addn-3, gc-addn-5, correspond to greedy covering construction (gc) followed by
k-addition neighborhood (addn) with k = {1, 3, 5}. A local regression line and a
least square linear regression line (dashed) are superimposed.

We treat k as if it were a qualitative factor, even though k is a numerical value
with a clear order. Treating discrete numerical factors as qualitative factors gives more
freedom, because in this way we do no assume that the change in the mean response
for k from 1 to 3 has to be the same as for k from 3 to 5.

A way to inspect the data is by plotting the percentage error of the algorithms
within each instance, which is interpreted as a different group of results. This is shown
in Figure 4. We observe that there are differences in the slopes and intercepts of the
linear regressions within each group. This hints at the presence of random effects and
interaction effects between the random and the fixed factors. We will therefore test
the inclusion of both a random instance intercept and a random instance-algorithm
interaction in the model that describes these data.

The results of the analysis of the mixed model are:

> op <- options(contrasts = c("contr.sum", "contr.poly"))

> fm2a <- lmer(gap ~ k + (1 | instance) + (1 | instance:k),

data = YPOR)

> print(fm2a, digits = 3)

Soutput
Linear mixed model fit by REML
Formula: gap ~ k + (1 | instance) + (1 | instance:k)

Data: YPOR
AIC BIC logLik deviance REMLdev
-95 -81.1 53.5 -111 -107
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Random effects:
Groups Name Variance Std.Dev.
instance:k (Intercept) 0.15795 0.3974
instance (Intercept) 1.23514 1.1114
Residual 0.00387 0.0622
Number of obs: 75, groups: instance:k, 15; instance, 5
Fixed effects:

Estimate Std. Error t value
(Intercept) 3.8939 0.5075 7.67
k1 -0.1786 0.1455 -1.23
k2 -0.0342 0.1455 -0.23

Correlation of Fixed Effects:
(Intr) k1

k1 0.000
k2 0.000 -0.500

We have specified sum contrasts, here, as a way to identify parameters in the model
instead of the default treatment contrasts for lmer. This will make later results com-
parable with lm. The estimated variances for the instance and the instance-algorithm
interaction random effects are σ̂2

τ = 1.23514 and σ̂2
γ = 0.15795, respectively. The

section Fixed effects reports the estimates of the fixed effects model parameters
from which we obtain the point estimates for the mean performance of the algorithms
E[Yijk] = µ+αj. The sum contrasts specified before implies that

∑
αj = 0. Hence, for

αk1 = −0.1786 and αk2 = −0.0342, we have αk3 = 0.2128, with k1 representing k = 1,
k2, k = 3 and k3, k = 5. The last column in this section gives the t statistics for the
hypotheses that the jth level of the factor is not different from the mean response.

Let’s look at the acceptance or rejection of the null hypothesis that the variance
components of the random effects are zero. The exact test is via the F -ratio from
Table 1 of Section 2.2. If we do not want to look up the table the likelihood ratio test
can be computed more easily.

> fm2a.1 <- lmer(gap ~ k + (1 | instance), data = YPOR,

REML = FALSE)

> fm2a.2 <- lmer(gap ~ k + (1 | instance) + (1 | instance:k),

data = YPOR, REML = FALSE)

> anova(fm2a.2, fm2a.1)

Soutput
Data: YPOR
Models:
fm2a.1: gap ~ k + (1 | instance)
fm2a.2: gap ~ k + (1 | instance) + (1 | instance:k)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
fm2a.1 5 71.0 82.6 -30.5
fm2a.2 6 -99.2 -85.3 55.6 172 1 <2e-16

As is clear, the instance-algorithm interactions contribute significantly to the variabil-
ity of the performance measure, and hence, given (13), measurements obtained on a
particular instance show dependence. A similar test can be performed for the instance
variance, by fitting a model without an instance random effect:
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> fm2a.3 <- lmer(gap ~ k + (1 | instance:k), data = YPOR,

REML = FALSE)

> anova(fm2a.2, fm2a.3)

Soutput
Data: YPOR
Models:
fm2a.3: gap ~ k + (1 | instance:k)
fm2a.2: gap ~ k + (1 | instance) + (1 | instance:k)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
fm2a.3 5 -84.6 -73.0 47.3
fm2a.2 6 -99.2 -85.3 55.6 16.6 1 4.5e-05

Hence also this term is significant and should be included in the model.
Let’s now analyze the significance of fixed effects. We use the F -ratio6

> anova(fm2a)

Soutput
Analysis of Variance Table
Df Sum Sq Mean Sq F value

k 2 0.00956 0.00478 1.23

The lmer function does not return the p-value for the test on fixed-effects terms but
the F statistic computed by the anova function is the correct one for balanced designs.
Hence, the observed F statistic is 1.23 on 2 (Df) and (h − 1)(q − 1) = 8 degrees of
freedom and with a p-value of 0.341,

> p <- nlevels(YPOR$instance)

> h <- nlevels(YPOR$k)

> r <- length(unique(YPOR$run))

> 1 - pf(anova(fm2a)$"F value", h - 1, (h - 1) * (p - 1))

Soutput
[1] 0.341

We can conclude that there is not a significant effect of k and, hence, that the mean
performance measure is not affected by this parameter.

Since we could not reject the global null hypothesis on k, the paired comparison
plot will show overlapping confidence intervals for the three values of k. For the sake
of completeness in our exposition, we derive this plot that we show in Figure 5, left
panel.

> VC <- VarCorr(fm2a)

> sigma.gamma <- as.numeric(attr(VC$"instance:k", "stddev"))

> sigma <- as.numeric(attr(VC, "sc"))

> MSIK <- sigma^2 + p * sigma.gamma^2

> Yj. <- with(YPOR, aggregate(gap, list(alg = algorithm),

mean))

> s <- sqrt(2) * sqrt(MSIK/(p * r))

> T <- qtukey(1 - 0.05, h, (h - 1) * (p - 1))/sqrt(2)

> Yj.$lower <- Yj.$x - 0.5 * T * s

> Yj.$upper <- Yj.$x + 0.5 * T * s

> intervals(alg ~ x, Yj.)

6Due to implementation issues in R and SAS the likelihood ratio test cannot be used for testing
some of the fixed effects, as they remain unidentified (SAS Institute Inc., 2007).
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Figure 5: Paired comparison plots. On the left the one obtained by the mixed effects
model, on the right the one obtained by ordinary ANOVA

The function intervals is a wrapper to dotplot available from the online com-
pendium at http://www.imada.sdu.dk/~marco/Mixed/.

We check the diagnostic plots. We consider the conditional and marginal struc-
ture of the model (equation (17) and (18) of Section 2.4, respectively). In the stan-
dard diagnostic plots of residuals against fitted values we check the assumption of
homoscedasticity of observations, whereas, in the QQplot we check if residuals meet
the assumption of normality. Conditional residuals pertain to each instance individ-
ually taken and refer to the distances of observed points from the fitted conditional
models. Aggregating these data for the 5 instances available we see that there might
be some deviation from the assumptions, mainly due to the small variability of the
responses within an instance. It might then be worth indicating the instances that
cause the largest deviation from the assumptions. Things are instead much better for
the marginal structure, which is the one we are mostly interested in our study. The
plots seem to support quite well the assumptions of homoscedasticity and normality.

> plot(fitted(fm2a, type = "response"), residuals(fm2a,

type = "response"), main = "Conditional residuals",

xlab = "Predicted", ylab = "Residuals")

> res <- residuals(fm2a, type = "response")

> qqnorm(res, main = "Conditional residuals, QQplot")

> qqline(res)

> fm2a.0 <- lm(gap ~ k, data = YPOR)

> x <- model.matrix(fm2a.0)

> pred <- x %*% fixef(fm2a)

> res <- YPOR$gap - pred

> plot(pred, res, main = "Marginal residuals", xlab = "Predicted",

ylab = "Residuals")

> qqnorm(res, main = "Marginal residuals, QQplot")

> qqline(res)

Finally, it is instructive to compare the results obtained here under a random effects
model with those obtained by considering instances as fixed factors. In this latter case,
the test for algorithmic differences is performed relative to the mean squared error, and
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Figure 6: Diagnostic plots

not relative to the instance-algorithm interaction mean squares (see Table 1, Section
2.2). Moreover the F test has 60 degrees of freedom at the denominator, compared
to 8 under a mixed model, and hence, for the same significance level it would reject
sooner.

> fm2a.lm <- lm(gap ~ k * instance, data = YPOR)

> anova(fm2a.lm)

Soutput
Analysis of Variance Table
Response: gap

Df Sum Sq Mean Sq F value Pr(>F)
k 2 2.0 1.0 253 <2e-16
instance 4 77.3 19.3 4986 <2e-16
k:instance 8 6.3 0.8 205 <2e-16
Residuals 60 0.2 0.0039

This would have led us to reject the hypothesis on k and conclude, mistakenly, that
k is significant! The different conclusion is also shown in Figure 5, where on the right
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we report the paired comparison plot that would arise from a Tukey pairwise analysis
based on the fixed effect model of lm.

〈N, q(−), r〉 We now discuss the case 〈N, q(−), r〉 and compare replicated and un-
replicated designs. This case differs slightly from the previous in that we study three
fixed factors and this leads us to a multi-factorial analysis. All fixed factors are algo-
rithmic factors and are tested at three levels.

– init.heur: the starting solution generated by three different construction heuris-
tics. It is a categorical factor in the levels {gc,la,sp};

– neigh: the three local search schemes determined by their neighborhood struc-
ture as described above. It is a categorical factor in the levels {addn,covn,spn};

– k: the parameter that determines the extension of the neighborhood. It is a
categorical factor in the levels {1,3,5}.

The 27 possible combinations give rise to 27 algorithms to test. If our computa-
tional budget allows us to run 675 experiments then we can choose between a replicated
design with 5 instances and 5 runs per instance, or an unreplicated design with one
single run of each algorithm on 25 instances.

Let’s analyze first the replicated design.

> load("Data/NPOR.dataR")

> str(NPOR, strict.width = "cut", width = 70)

Soutput
'data.frame': 675 obs. of 6 variables:
$ instance : Factor w/ 5 levels "sm-800-h-w1",..: 1 1 1 1 1 1 1 1 1..
$ init.heur: Factor w/ 3 levels "gc","la","sp": 1 1 1 2 2 2 2 3 3 1..
$ neigh : Factor w/ 3 levels "addn","gcn","spn": 2 2 1 3 2 2 2 1..
$ k : Factor w/ 3 levels "1","3","5": 3 2 1 2 3 2 1 2 3 2 ...
$ run : int 2 3 1 3 5 5 2 3 3 1 ...
$ gap : num 1.521 1.433 0.397 2.976 2.843 ...

We test the significance of the random effects and their interactions. The exponent
of two in the lmer model statement indicates that all interactions of the second order
are included.

> fm2bR.0 <- lm(gap ~ (k + init.heur + neigh)^2, data = NPOR)

> fm2bR.1 <- lmer(gap ~ (k + init.heur + neigh)^2 + (1 |

instance), data = NPOR, REML = FALSE)

> fm2bR.2 <- lmer(gap ~ (k + init.heur + neigh)^2 + (1 |

instance) + (1 | instance:k) + (1 | instance:neigh) +

(1 | instance:init.heur), data = NPOR, REML = FALSE)

> LRT <- as.numeric(2 * (logLik(fm2bR.2) - logLik(fm2bR.0)))

> 1 - pchisq(LRT, 1)

Soutput
[1] 0

> anova(fm2bR.2, fm2bR.1)
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Soutput
Data: NPOR
Models:
fm2bR.1: gap ~ (k + init.heur + neigh)^2 + (1 | instance)
fm2bR.2: gap ~ (k + init.heur + neigh)^2 + (1 | instance) + (1 | instance:k) +
fm2bR.2: (1 | instance:neigh) + (1 | instance:init.heur)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
fm2bR.1 21 1301 1396 -630
fm2bR.2 24 672 780 -312 636 3 <2e-16

The likelihood ratio test indicates again that the random factor instance is significant
and also at least one of the random interaction terms between a fixed factor and the
instance factor. For the fixed effects we have

> fm2bR <- lmer(gap ~ (k + init.heur + neigh)^2 + (1 |

instance) + (1 | instance:k) + (1 | instance:neigh) +

(1 | instance:init.heur), data = NPOR)

> anova(fm2bR)

Soutput
Analysis of Variance Table

Df Sum Sq Mean Sq F value
k 2 0.4 0.2 1.56
init.heur 2 10.5 5.2 41.65
neigh 2 3.6 1.8 14.36
k:init.heur 4 0.3 0.1 0.69
k:neigh 4 39.6 9.9 78.54
init.heur:neigh 4 37.5 9.4 74.43

We omit here the details of the analysis of variance, which is similar to the previous
case. It yields a p-value of 0.2675 for k and of 0.5984 for the interaction k:init.heur

thus leading us to not reject the null hypothesis of no effect for these two factors. The
latter result was expected, given that k does not alter the construction heuristics. All
other effects are instead significant. To gain insight when interaction terms are signif-
icant one can use 2D or 3D interaction plots. In Figure 7 we visualize the interactions
neigh:init.heur and k:neigh.

> with(NPOR, {

interaction.plot(neigh, init.heur, gap, fixed = TRUE)

interaction.plot(k, neigh, gap, fixed = TRUE)

})

For later comparisons we report also the estimates of the fixed effects:

> summary(fm2bR)@coefs[1:10, ]

Soutput
Estimate Std. Error t value

(Intercept) 2.3800 0.2509 9.485
k1 0.0340 0.0375 0.909
k2 -0.0662 0.0375 -1.767
init.heur1 -1.0076 0.1118 -9.016
init.heur2 0.3669 0.1118 3.283
neigh1 -1.1496 0.2180 -5.273
neigh2 0.3952 0.2180 1.813
k1:init.heur1 0.0131 0.0273 0.480
k2:init.heur1 -0.0147 0.0273 -0.538
k1:init.heur2 -0.0421 0.0273 -1.542
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Figure 7: Interaction plots to visualize the impact of neigh:init.heur and k:neigh in
the replicated model fm2bR

We now turn to the unreplicated design, i.e., r = 1.

> load("Data/NPOY.dataR")

> str(NPOY, strict.width = "cut", width = 70)

Soutput
'data.frame': 675 obs. of 6 variables:
$ instance : Factor w/ 25 levels "1","10","11",..: 1 1 1 1 1 1 1 1 ..
$ init.heur: Factor w/ 3 levels "gc","la","sp": 1 1 1 1 2 2 1 3 1 1..
$ neigh : Factor w/ 3 levels "addn","gcn","spn": 3 3 2 1 1 2 1 1..
$ k : Factor w/ 3 levels "1","3","5": 2 1 3 2 3 2 1 1 1 3 ...
$ run : int 1 1 1 1 1 1 1 1 1 1 ...
$ gap : num 1.565 1.984 1.521 0.397 1.807 ...

We omit the likelihood ratio test analysis for the random effects, which is encoded
in R exactly in the same way as for the replicated case and yields the same highly
significant p-values.

The main point we want to make with this design pertains, instead, the fixed
effects:

> fm2bU <- lmer(gap ~ (k + init.heur + neigh)^2 + (1 |

instance) + (1 | instance:k) + (1 | instance:neigh) +

(1 | instance:init.heur), data = NPOY)

> anova(fm2bU)

Soutput
Analysis of Variance Table

Df Sum Sq Mean Sq F value
k 2 1.13 0.56 7.62
init.heur 2 10.32 5.16 69.82
neigh 2 10.80 5.40 73.11
k:init.heur 4 0.68 0.17 2.30
k:neigh 4 15.50 3.88 52.47
init.heur:neigh 4 20.07 5.02 67.92
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Again the only p-values larger than 0.05 are those for k and k:init.heur (not shown).
But the relevant observation is about the estimates of fixed effects means

> summary(fm2bU)@coefs[1:10, ]

Soutput
Estimate Std. Error t value

(Intercept) 1.7642 0.1487 11.864
k1 0.0423 0.0148 2.861
k2 -0.0552 0.0148 -3.731
init.heur1 -0.7503 0.0639 -11.740
init.heur2 0.3007 0.0639 4.706
neigh1 -0.8072 0.0677 -11.929
neigh2 0.2878 0.0677 4.253
k1:init.heur1 0.0197 0.0209 0.941
k2:init.heur1 -0.0213 0.0209 -1.017
k1:init.heur2 -0.0604 0.0209 -2.889

The standard errors of these estimates in the unreplicated case are smaller than those
in the replicated case, an observation which is consistent with Birattari (2004). For
example, for k1 we have s[αk1] = 0.0375 in the replicated case against s[αk1] = 0.0148
in the unreplicated case. As a consequence of this fact, the unreplicated case yields
more powerful tests for differences between the levels of the fixed factors. Hence, when
a limit on the total number of experiments is imposed, maximizing the number of tested
instances should be preferred with respect to maximizing the number of replicates.

4.3 Case 〈-, q(M), r〉: Nested design

In this case we study the effect of instance parameters which are used to stratify the
population of instances. We consider only one algorithm, as we are only interested in
the instance parameters. Obviously, the conclusions on the instances will be valid only
for the algorithm chosen. We have two instance factors under study:

– type: the type of graph with levels {U,G,sm}

– weights: the distribution of weights with levels {w,1};

> load("Data/OPMR.dataR")

> str(OPMR, strict.width = "cut", width = 70)

Soutput
'data.frame': 150 obs. of 8 variables:
$ weights : Factor w/ 2 levels "1","w": 1 1 1 1 1 1 1 1 1 1 ...
$ type : Factor w/ 3 levels "G","U","sm": 1 1 1 1 1 1 1 1 1 1 ...
$ algorithm: Factor w/ 1 level "gc-addn-1": 1 1 1 1 1 1 1 1 1 1 ...
$ instance : Factor w/ 30 levels "G-800-l-11","G-800-l-12",..: 1 1 ..
$ run : int 1 5 2 2 4 3 5 2 1 3 ...
$ gap : num 3.3 3.3 5.5 5.5 3.3 ...
$ class : Factor w/ 6 levels "G-800-l-1","G-800-l-w",..: 1 1 1 1..
$ inst.seed: Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2..

Nesting is automatically handled appropriately in lmer as long as the levels of the in-
stance factor are distinct (Bates, 2007). This might be not the case when the nesting is
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implicit, that is, when the labels used for the levels of the variable at the inner state are
incomplete. For example, this is the case if we identify the instances for each combina-
tion of the instance factors, type and weights, by the seeds used to generate them, say,
1, 2, 3, 4, 5. We might have 5 seeds but 3×2×5 different instances. If so, then we just
need to specify the seed as the random factor by (1|type:weights:seed) or relabel
the instances as G-800-w-1, G-800-w-2, etc. and specify simply (1|type:weights).
Our data have both identifiers described: instance and inst.seed.

We first test the hypothesis on the nested random effects. Again we can choose
between F -ratio and likelihood ratio test. The likelihood ratio test has the advantage
that it does not require to recalculate the expected mean squares for the appropriate
test statistic, so we try that first. In R we have

> fm3.1 <- lmer(gap ~ (type + weights)^2 + (1 | type:weights:inst.seed),

data = OPMR, REML = FALSE)

> fm3.0 <- lm(gap ~ (type + weights)^2 + 1, data = OPMR)

> LRT <- as.numeric(2 * (logLik(fm3.1) - logLik(fm3.0)))

> 1 - pchisq(LRT, 1)

Soutput
[1] 1.71e-14

We see that we can reject H0 : σ2
τ = 0. As mentioned above, the likelihood ratio test

is more conservative than the F -ratio test hence, since we reject already, there is no
need to check the F -ratio test as well. We therefore include the random effect in the
model.

The next step is considering the fixed factors that determine the instance classes.
Again, since the experiment is balanced the p-values can be determined via the anova

F statistics

> fm3 <- lmer(gap ~ (type + weights)^2 + (1 | type:weights:inst.seed),

data = OPMR)

> fm3.aov <- anova(fm3)

> print(fm3.aov, digits = 3)

Soutput
Analysis of Variance Table

Df Sum Sq Mean Sq F value
type 2 21.43 10.71 42.43
weights 1 0.10 0.10 0.38
type:weights 2 1.85 0.92 3.66

and manually derive the p-values adding the degrees of freedom of the denominator,
that in this case are (r − 1)b1b2, with b1 and b2 being the number of levels of the two
instance factors

> type <- fm3.aov["type", ]

> 1 - pf(type$"F value", type$Df, (5 - 1) * 3 * 2)

Soutput
[1] 1.32e-08

> weights <- fm3.aov["weights", ]

> 1 - pf(weights$"F value", weights$Df, (5 - 1) * 3 * 2)
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Soutput
[1] 0.544

> interaction <- fm3.aov["type:weights", ]

> 1 - pf(interaction$"F value", interaction$Df, (5 - 1) * 3 * 2)

Soutput
[1] 0.0409

We conclude that the type has a significant effect on the average performance of
the algorithm while the weights not. If relevant to the analysis, one can proceed to
consider the estimated effects of these two fixed factors. They are to be interpreted as
the estimated change in the mean lower bound approximation of the algorithm caused
by different characteristics of the instances.

4.4 Case 〈N, q(M), r〉: General design

In the last case, we aim at a general analysis of the influence on mean performance
of local search components and different instance features. We consider a design with
the following algorithm and instance factors

– init.heur: the construction heuristic with levels {gc,la,sp};

– neigh: the neighborhood with levels {addn,gcn,spn};

– k: the value of k in the neighborhoods with categorical levels {1,3,5};

– type: the type of graphs with levels {U,G,sm};

– dens: the edge density in the graph with levels {l,m,h};

– weights: the distribution of weights with levels {w,1}.

All these factors are fixed factors. Each combination of the three instance factors gives
rise to a class from which we sample 5 instances. The additional factor instance, or
inst.seed, is, therefore, a random factor. The experiment has 3 × 3 × 2 × 5 = 90
experimental units (instances). Moreover we replicate each run of an algorithm 5 times
leading to a total of 12150 runs over all.

> load("Data/NPMR.dataR")

> str(NPMR, strict.width = "cut", width = 70)

Soutput
'data.frame': 12150 obs. of 12 variables:
$ weights : Factor w/ 2 levels "1","w": 1 1 1 1 1 1 1 1 1 1 ...
$ type : Factor w/ 3 levels "G","U","sm": 1 1 1 1 1 1 1 1 1 1 ...
$ dens : Factor w/ 3 levels "h","l","m": 2 2 2 2 2 2 2 2 2 2 ...
$ init.heur: Factor w/ 3 levels "gc","la","sp": 3 2 3 1 2 2 3 2 1 2..
$ neigh : Factor w/ 3 levels "addn","gcn","spn": 2 1 2 3 3 3 3 1..
$ k : Factor w/ 3 levels "1","3","5": 1 3 3 2 3 3 3 2 1 2 ...
$ instance : Factor w/ 90 levels "G-800-h-1-1",..: 11 11 11 11 11 1..
$ run : int 4 4 5 2 3 2 3 3 3 3 ...
$ gap : num 11 3.3 3.3 5.5 6.6 ...
$ class : Factor w/ 18 levels "G-800-h-1","G-800-h-w",..: 3 3 3 ..
$ algorithm: Factor w/ 27 levels "gc-addn-1","gc-addn-3",..: 22 12 ..
$ inst.seed: Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1..
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In a full nested factorial design of this kind we could study fixed effects interactions
up to the sixth level. However, high order interactions are difficult to interpret and we,
therefore, restrict ourselves to interactions of level three and to no interaction between
algorithmic and instance factors.7 Let’s first test the significance of the instance factor.

> fm4.1 <- lmer(gap ~ (type + weights + dens)^3 + (init.heur +

neigh + k)^3 + (1 | type:weights:dens:inst.seed),

data = NPMR, REML = FALSE)

> fm4.0 <- lm(gap ~ (type + weights + dens)^3 + (init.heur +

neigh + k)^3, data = NPMR)

> LRT <- as.numeric(2 * (logLik(fm4.1) - logLik(fm4.0)))

> 1 - pchisq(LRT, 1)

Soutput
[1] 0.224

In this case the p-value from the likelihood ratio test is not significant and it does
not allow us to reject the null hypothesis that the two models are equal. However,
as we mentioned the likelihood ratio test is rather conservative, hence we check also
the exact F -ratio test. The terms in the F -ratio are the same as those provided
in Table 2 of Section 2.3 but the derivation of the degrees of freedom require some
more work. Calling a1, ..., aN and b1, ..., bM the levels of the algorithmic factors and
instance factors, respectively, and using the rules for the degrees of freedom given
by Montgomery (2005, pag. 502) we obtain

> fm4.1 <- lmer(gap ~ (type + weights + dens)^3 + (init.heur +

neigh + k)^3 + (1 | instance), data = NPMR)

> VC <- VarCorr(fm4.1)

> sigma.tau <- as.numeric(attr(VC$instance, "stddev"))

> sigma <- as.numeric(attr(VC, "sc"))

> F.ratio <- (sigma^2 + (a1 * a2 * a3 * r) * sigma.tau^2)/sigma^2

> (df1 <- b1 * b2 * b3 * (q - 1))

Soutput
[1] 72

> (df2 <- as.numeric(fm4.1@dims["n"]) - 1 - sum(anova(fm4.1)["Df"]) -

df1)

Soutput
[1] 12034

> 1 - pf(F.ratio, df1, df2)

Soutput
[1] 0.00469

The p-value is significant. Since the test is exact we give preference to this result and
proceed to analyze the fixed effects using the mixed model rather than the ordinary
ANOVA. In order to add the p-values to the ANOVA table we use a function written
by ourselves and available from the online compendium. This function is simply a
wrapper that uses the F -ratio from the anova method for lmer and the degrees of
freedom derived by the rules of Montgomery (2005).

7Note that if high order interactions are not of interest, fractional factorial designs are a better
choice than full factorial designs because they minimize the number of experiments.
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> fm4 <- lmer(gap ~ (type + weights + dens)^3 + (init.heur +

neigh + k)^3 + (1 | type:weights:dens:inst.seed),

data = NPMR)

> anova.4lmer.balanced(fm4, c("type", "weights", "dens"),

instance.id = "inst.seed")

Soutput
Analysis of Variance Table

Num. Def Sum Sq Mean Sq F value Den. Df Pr(>F)
type 2 82058 41029 951.95 72 <2e-16
weights 1 22441 22441 520.66 72 <2e-16
dens 2 6882 3441 79.84 72 <2e-16
init.heur 2 142577 71288 1654.02 12034 <2e-16
neigh 2 117939 58969 1368.19 12034 <2e-16
k 2 76931 38465 892.47 12034 <2e-16
type:weights 2 90635 45318 1051.45 72 <2e-16
type:dens 4 313 78 1.82 72 0.14
weights:dens 2 9473 4736 109.89 72 <2e-16
init.heur:neigh 4 47798 11949 277.25 12034 <2e-16
init.heur:k 4 46994 11748 272.58 12034 <2e-16
neigh:k 4 75897 18974 440.24 12034 <2e-16
type:weights:dens 4 209 52 1.21 72 0.31
init.heur:neigh:k 8 40766 5096 118.23 12034 <2e-16

The results indicate that all main effects are significant and that among the inter-
actions only type:weight:dens and type:dens are not significant. The omission of
effects that might be significant in the model may result in an overestimation of the
denominator in the F -ratio and consequently in more conservative tests. However,
these results are sufficient for us. They indicate that there is a significant effect of
the nesting factors and this indicates that the analysis must be differentiated for each
class.

Our final step is to split the data and to perform for each class an analysis similar
to the one of case 2. In Figure 8 we report in a dotplot the average results of each
algorithmic configuration on each instance class supported by confidence intervals (the
function intervals to compute the overall plot is available online). The overall result
is that the combination gc-addn is the one yielding the best performance, consitently
over the different instance classes, while there does not seem to be a significant differ-
ence for this configuration in the value chosen for k.

5 Summary and Outlook

In this chapter, we described linear statistical models and their use in the specific task
of analyzing the results of optimization algorithms. We put our emphasis on mixed
effects models in which algorithmic components are treated as fixed factors and the
test instances as random factors. We provided evidence that these models lead to
different inferences with respect to ordinary ANOVA models where the instances are
treated also as fixed factors. In addition, we argued that when instance factors are also
subject of study then the models become nested or, alternatively, separate analyses
have to be conducted.

We developed a detailed example for didactical purposes and showed how the re-
sults from the analysis of mixed models should be interpreted and how they may be
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Figure 8: Confidence intervals derived as described in Section 2.2 for each instance class
indepenedently taken. On the y-axis the labels of the algorithms indicate the
composition with respect to the components described in the text. On the x-axis,
the gap represents the percentage deviation from the lower bound
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presented by means of tables and graphics. These might be used in articles in addition
to the common practice of reporting numerical results on a few benchmark instances.
The inferential analysis becomes more relevant to be reported as the amount of data
decreses.

There are a number of issues that we left out and that may be included in this
framework. Examples are conditional parameters for the algorithms, that can be
modelled similarly to the nesting of the instances, and the permutation of instance
data, a feature that might have a certain impact on the results, that can also be
included yielding a design with two nested random factors and thus a hierarchical
model (Fox, 2002).

There are also further developments that could be pursued. The graphical presen-
tation of results constitutes one of the possible improvements of this work. Regression
trees offer a nice and concise way to attain this. They consist of (binary) trees ob-
tained by branching the data under analysis with branching higher in the tree for the
factors responsible of the largest evidence for differences (identified by the entity of
the p-value). However, all available packages of which we are aware do not include the
possibility of treating random factors, nesting and neither blocking factors.

The whole chapter was based on the assumption of additive linear models and
normality of data. A natural extension of this work is the use of non-linear mixed
effects models and generalized linear mixed effects models that seem more appropriate
in many cases of analysis of optimization algorithms. These models are often used
in the study of repeated measurements over time of a certain response (longitudinal
data). This could disclose a further development, that is, the analysis and comparison
of optimization algorithms not only on the basis of their final response but also on the
way performance changes over run time.
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